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The letters within the columns of three plants indicate significant differences, while the same 
letters indicate no significant differences (p < 0.05). 
Figure 9.10. Effects of CHP@CMC-PEI and PGPR on Cd accumulation in plants. Bars represent 
mean ± SD. The letters within the columns of three plants indicate significant differences, while 
the same letters indicate no significant differences (p < 0.05). 
Figure 9.11. Effects of CHP@CMC-PEI and PGPR on Cd fractionation in rhizosphere soil. Bars 
represent mean ± SD. The letters within the columns of three plants indicate significant 
differences, while the same letters indicate no significant differences (p < 0.05). 
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ABSTRACT 

Food is the major pathway for exposure to cadmium (Cd) from agricultural soils to humans 

and other living entities; it is a substance that must be reduced urgently and effectively. Plants can 

select beneficial microbes such as plant growth-promoting rhizobacteria (PGPR) at the expense of 

root exudates in the rhizosphere. They are excellent and efficient bio-factories that have a 

significant ability to bio-reduce Cd by adsorption, precipitation, and bioaugmentation. This thesis 

aimed to explain the rhizo-immobilization of Cd in contaminated soils using a combination of 

PGPR and plant nutrient-containing fertilizers. In agricultural rhizosphere soil is prominent for 

controlling the PGPR, which is vital for the influence of Cd phyto-availability and developing the 

competition for different ions such as hydrogen ions and cations. The formation of positively 

charged sites can reduce the sorption of Cd at low pH, which might be toxic to PGPR and plant 

roots. The Cd sorption in this regard plays a crucial role. The distribution coefficient (Kd) of soil 

is closely linked to soil pH, SOM, and CEC in agricultural soil. The higher values of Freundlich 

parameters indicated a higher Cd sorption capacity with high pH soil (PTS) and lower in low pH 

soil (RTS), where PGPR can be applied for plant growth. The soil PTS is much better soil among 

others in the current experiment for the safe growing of different agricultural crops such as bread 

wheat, durum wheat, and maize and minimizes the Cd stress. The PTS soil Cd may reduce the 

plant growth parameters, which is predicted by 50% inhibition concentration (IC50) values of 

4.21±0.29 and 4.02±0.95, respectively, whereas the maximum HRI index is 3.85±0.05 and 

5.32±0.27, respectively for Triticum aestivum L. cv. Mustang and Triticum aestivum L. cv. Lancer. 

The plant growth-promoting rhizobacteria (PGPR) (Methylobacterium oryzae CBMB20) 

increases the activities of plant Cd detoxification enzymes such as CAT, SOD, POD, AsA, GSH, 

TSS, TPH, and proline in the roots of wheat plants (Mustang) when they are grown in acidic and 

alkaline soil under Cd stress conditions.  

Moreover, the PGPR improves the morphology and physiology of the roots of wheat 

(Mustang) seedlings and functions better in alkaline soil compared to its acidic counterpart.  Novel 
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CMC-PEI-8 composites were synthesized to establish the effective reduction of Cd in plant parts 

in addition to PGPR. The CMC-PEI-8 showed significant adsorption of Cd2+ from an aqueous 

state and could be well described by the Langmuir model; adsorption capacity achieved 

206.81±29.68 mg g-1, which was better than what other reports documented. Simultaneously, 

good usability in different ranges of pH of the CMC-PEI-8 composites adsorbent offers good 

suggestions for applicability in agriculture.  Then, the composite was synthesized by loading plant 

essential nutrients such as Ca and P while the micro-composites served to remediate Cd in plant 

parts. The slow and controlled release of P using these micro-composites was approximately 58.30 

mg g–1.  

The phosphate release kinetics fitted well with the Elovich model. The essential plant nutrients 

loaded micro-composites were evaluated for Cd remediation from irrigation water, and their 

essence was assessed in terms of PGPR inoculation and multiplication. The micro-composites 

showed Cd2+ with 314.0 mg g-1, in Langmuir isotherm equations. In addition, it has great potential 

for use with PGPR which illustrates the significant practical aspects under Cd stress conditions in 

the plant soil environment. The modified micro-composite CHP@CMC-PEI, which is regarded as 

CHP@CMC-PEI , reduces the DTPA-extractable Cd significantly by not altering pH considerably; 

this is due to the addition of PGPR (Methylobacterium oryzae CBMB20). The combined 

amendment benefits plant growth and can significantly diminish Cd accumulation in plants. Thus, 

combining the bacterial PGPR and biogenic CHP@CMC-PEI represents a potential method to 

reduce Cd in the soil and its accumulation in plants. 
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THESIS OUTLINE 

Chapter 1 provides a detailed introduction to the utilization of plant growth-promoting 

rhizobacteria (PGPR) with mineral fertilizers to curtail Cd stress in plants, agricultural soil, and 

humans. The chapter also summarizes the current remediation strategies and global demand for 

PGPR, and polyethyleneimine modified carboxymethyl and Calcium hydrogen phosphate as novel 

fertilizers and their possibilities and challenges.  

 

Chapter 2 is a review paper on Cd immobilization in the rhizosphere and plant-cellular 

detoxification: the role of plant growth-promoting rhizobacteria as a sustainable solution is 

explained here. (Published) 

 

Chapter 3 is a research article seeking to demonstrate Cd retention and release kinetics in different 

agricultural soils for suitability. The objective is to reduce soil Cd-related health hazards. 

 

Chapter 4 deals with Cd bioaccumulation and tolerance indices of wheat plants grown in Cd-

contaminated soil. A health risk assessment is carried out here. (Published)  

 

Chapter 5 describes the mitigation of Cd biotoxicity and stress through morphology, physiology, 

and antioxidative mechanisms of wheat (Triticum aestivum L.) roots in acidic and alkaline soils. 

To do this, Plant Growth-Promoting Rhizobacteria (PGPR) are employed. 

 

Chapters 6-8 describe the various polymer-based composites which were developed and applied 

for their potential application in Cd adsorption from aqueous solution and agricultural soils. 

Additionally, the PGPR survivability was also assessed while those composites were applied in 

in-vitro growth medium. 
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Chapter 9 compiles the types of Plant Growth-Promoting Bacteria (PGPR) and modifies biogenic 

Calcium Hydrogen Phosphate on phytoavailable Cd remediation and immobilization in the 

rhizosphere of agricultural crops. 

 

Chapter 10 is the summary of this thesis and suggests future research on Cd immobilization in the 

rhizosphere and plant-cellular detoxification. The role of plant growth-promoting rhizobacteria as 

a sustainable solution is concluded here.  
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